Investigation of Performance and Emission Parameters of Hydroxygen (HHO)-Enriched Diesel Fuel with Water Injection in the Compression Ignition Engine

Author:

Juknelevičius RomualdasORCID,Rimkus AlfredasORCID,Pukalskas Saugirdas,Szwaja StanislawORCID

Abstract

The development of engine technologies and research on combustion processes are focused on finding new generation CI engines with simple control of the combustion process while efficiently maintaining desirable engine performance and meeting emission regulations. This comprehensive study on the relatively low hydrogen energy fraction (0.65–1.80%), supplied by onboard water electrolysers and on water injection, was performed on the performance and emission parameters of the CI engine. The article presents results of both experiment and simulation about the effect of hydroxygen and water injection on the combustion process, auto-ignition delay, combustion intensity, the temperature of the mixture and engine performance at BMEP of 0.2 MPa, 0.4 MPa, 0.6 MPa, and 0.8 MPa at a speed of 1900 rpm. For the first part, the test engine operated with diesel fuel with 3.5 L/min of hydroxygen gas supplied with an external mixture formation. The HHO has an effect on the combustion process at all range of BMEP. A decrease in BTE and increase in BSFC were noticed during tests. The peak pressure and the rate of heat release decreased, but the NOx decreased as well. The second part of experiment was performed with the injection of a substantial amount of water, 8.4–17.4 kg/h (140–290 cm3/min), and the same amount of hydroxygen. The injection of water further decreased the NOx; therefore, HHO and WI can be used to meet emission regulations. A simulation of the combustion process was carried out with the AVL BOOST sub-program BURN. The AVL BOOST simulation provided a detailed view of the in-cylinder pressure, pressure-rise, combustion intensity shape parameter and SOC.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference43 articles.

1. European Vehicle Market Statistics,2014

2. CO2 Emissions from Fuel Combustion. Overviewhttp://www.iea.org/publications/freepublications/publication/CO2EmissionsFromFuelCombustion2017Overview.pULSD

3. Work Programme 2016–2017 “Smart, Green and Integrated Transport”, 2016. Brusselshttps://egvi.eu/wp-content/uploads/2019/07/WP-2016-2017-updated.pdf

4. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet

5. Experimental study of inlet manifold water injection on combustion and emissions of an automotive direct injection Diesel engine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3