Coupling a Gas Turbine Bottoming Cycle Using CO2 as the Working Fluid with a Gas Cycle: Exergy Analysis Considering Combustion Chamber Steam Injection

Author:

Fatemi Alavi S. Hamed1ORCID,Javaherian Amirreza1,Mahmoudi S. M. S.1,Soltani Saeed1ORCID,Rosen Marc A.2ORCID

Affiliation:

1. Faculty of Mechanical Engineering, University of Tabriz, Tabriz 16471, Iran

2. Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada

Abstract

Gas turbine power plants have important roles in the global power generation market. This paper, for the first time, thermodynamically examines the impact of steam injection for a combined cycle, including a gas turbine cycle with a two-stage turbine and carbon dioxide recompression. The combined cycle is compared with the simple case without steam injection. Steam injection’s impact was observed on important parameters such as energy efficiency, exergy efficiency, and output power. It is revealed that the steam injection reduced exergy destruction in components compared to the simple case. The efficiencies for both cases were obtained. The energy and exergy efficiencies, respectively, were found to be 30.4% and 29.4% for the simple case, and 35.3% and 34.1% for the case with steam injection. Also, incorporating steam injection reduced the emissions of carbon dioxide.

Publisher

MDPI AG

Subject

Environmental Science (miscellaneous),Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3