Author:
Kabir ,Cueto ,Balamurugan ,Romeo ,Kuttruff ,Marx ,Negulescu
Abstract
Fish scales (FS), a byproduct of the fish processing industry, are often discarded carelessly. In this present study, FS were used as a promising bio-sorbent for the removal of anionic acid dyes (acid red 1 (AR1), acid blue 45 (AB45) and acid yellow 127 (AY127)) from the wastewaters of textile coloration. Here, physiochemical characterizations of the FS were investigated by SEM-EDS, TGA and FI-IR analyses, and dye absorption and removal efficiency were evaluated and optimized considering different process parameters such as concentration of initial dye solution, amount of FS used, contact time, FS size, process temperature, additives, stirring and vacuum. SEM images and EDS elemental analyses showed architectural variation and heterogeneous composition of FS at different places. TGA identified the 50% minerals, 33% organic matters and 17% moisture and volatile components. FI-IR evidenced considerable absorption of acid dyes. Process optimization revealed that additives and fine pulverized FS had significant positive and negative impact on the dye removal efficacy, respectively. Temperature and stirring improved dye removal efficiency, and dye absorption by FS was very fast at the beginning and became almost constant after an hour indicating saturation of absorption. The maximum dye absorptions in scales for AR1, AB45, and AY127 were noted as 1.8, 2.7 and 3.4 mg/g, respectively, and removal percentages were 63.5%, 89.3% and 93%. The effects of the process parameters were consistent across all three acid dyes used in this study. Two-way ANOVA model showed that dye type, process parameters and ‘dye type X process parameters’ interactions had significant effect on the dye removal efficiency.
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference39 articles.
1. The coming freshwater crisis is already here;Hinrichsen,2002
2. Challenges in Sustainable Wet Processing of Textiles;Saxena,2017
3. Sustainability Assessment of Cotton-Based Textile Wet Processing
4. Biological Wastewater Treatment;Grady,2011
5. Low-Cost Adsorbents: Growing Approach to Wastewater Treatment—a Review
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献