State of Charge and Capacity Tracking in Vanadium Redox Flow Battery Systems

Author:

Schofield Kalvin,Musilek PetrORCID

Abstract

The vanadium redox flow battery electrolyte is prone to several capacity loss mechanisms, which must be mitigated to preserve electrolyte health and battery performance. This study investigates a simple and effective technique for the recovery of capacity loss arising from symmetrical mechanisms via automatic electrolyte rebalancing. However, chemical or electrochemical techniques must be used to mitigate capacity loss from asymmetrical mechanisms (e.g., air oxidation of V2+), which requires knowledge of the oxidation states present in the electrolytes. As such, this study assesses the suitability of SOC tracking via electrolyte absorption for independent monitoring of the anolyte and catholyte within an existing VRFB system. Testing is performed over cycling of a 40 cell, 2.5 kW with 40 L of electrolyte. Optical monitoring is performed using a custom-made flow cell with optical paths (interior cavity thicknesses) ranging from 1/4″ to 1/16″. Light transmitted through the cell by a 550 lumen white light source is monitored by a simple photodiode. The electrolyte rebalancing mechanism displayed success in recovering symmetrical capacity losses, while optical monitoring was unsuccessful due to the high absorbance of the electrolyte. Potential improvements to the monitoring system are presented to mitigate this issue.

Funder

Alberta Innovates

Future Energy Systems

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3