Cost–Benefit Analysis of Kaposvár Solar Photovoltaic Park Considering Agrivoltaic Systems

Author:

Chalgynbayeva AidanaORCID,Mizik TamásORCID,Bai AttilaORCID

Abstract

In the context of the global energy crisis and crucial issues on food, the development and utilization of agrivoltaic (APV) systems could be a way to solve both the energy shortage and agricultural production at the same time and in the same area. As a combination of photovoltaics (PV) and agriculture, agrivoltaics has broad prospects for the future agricultural development of Hungary. Since especially large-scale PV systems can be considered as a potential basis of APV systems, the Kaposvár Solar Power Plant Project in Hungary was analyzed in this study. Two comparative analyses were used: between APV and PV systems, and between APV and apple plantation. An economic model has been developed. The baseline scenario shows that APV systems in current technological and economic conditions are not competitive with PV systems and are also less attractive for agricultural farmers, due to the long return period of the surplus investment cost. By analyzing uncertain factors and seeking possible solutions, the authors’ recommendations for the development, subsidy system and technology might be useful for both farmers and for decision makers to promote APV systems in the future.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference71 articles.

1. BP Statistical Review of World Energy 2022,2022

2. Solar PV Final Renewable Electricity Consumption in the European Union (EU-28) from 2010 to 2020

3. BP Statistical Review of World Energy: BP Statistical Review;Looney,2021

4. Solar Power: Policy Overview and Good Practices;Cox,2015

5. The Federal and State Context: Policies Affecting Solar Energy Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3