A Generalized Automated Framework for Urban Runoff Modeling and Its Application at a Citywide Landscape

Author:

Hosseiny HosseinORCID,Crimmins Michael,Smith Virginia B.ORCID,Kremer PelegORCID

Abstract

This research presents a fully automated framework for runoff estimation, applied to Philadelphia, Pennsylvania, a major urban area. Trends in global urbanization are exacerbating stormwater runoff, making it an increasingly critical challenge in urban areas. Understanding the fine-scale spatial distribution of local flooding is difficult due to the complexity of the urban landscape and lack of measured data, but it is critical for urban management and development. A one-meter resolution Digital Elevation Model (DEM) was used in conjunction with a model developed by using ArcGIS Pro software to create urban micro-subbasins. The DEM was manipulated to account for roof drainage and stormwater infrastructure, such as inlets. The generated micro-subbasins paired with 24-h storm data with a 10-year return period taken from the National Resources Conservation Service (NRCS) for the Philadelphia area was used to estimate runoff. One-meter land-cover and land-use data were used to estimate pervious and impervious areas and the runoff coefficients for each subbasin. Peak runoff discharge and runoff depth for each subbasin were then estimated by the rational and modified rational methods and the NRCS method. The inundation depths from the NRCS method and the modified rational method models were compared and used to generate percent agreement, maximum, and average of inundation maps of Philadelphia. The outcome of this research provides a clear picture of the spatial likelihood of experiencing negative effects of excessive precipitation, useful for stormwater management agencies, city managers, and citizen.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3