Strategies for Deploying a Sensor Network to Explore Planetary Lava Tubes

Author:

Kalita Himangshu,Thangavelautham JekanORCID

Abstract

Recently discovered pits on the surface of the Moon and Mars are theorized to be remnants of lava tubes, and their interior may be in pristine condition. Current landers and rovers are unable to access these areas of high interest. However, multiple small, low-cost robots that can utilize unconventional mobility through ballistic hopping can work as a team to explore these environments. In this work, we propose strategies for exploring these newly discovered Lunar and Martian pits with the help of a mother-daughter architecture for exploration. In this architecture, a highly capable rover or lander would tactically deploy several spherical robots (SphereX) that would hop into the rugged pit environments without risking the rover or lander. The SphereX robots would operate autonomously and perform science tasks, such as getting inside the pit entrance, obtaining high-resolution images, and generating 3D maps of the environment. The SphereX robot utilizes the rover or lander’s resources, including the power to recharge and a long-distance communication link to Earth. Multiple SphereX robots would be placed along the theorized caves/lava tube to maintain a direct line-of-sight connection link from the rover/lander to the team of robots inside. This direct line-of-sight connection link can be used for multi-hop communication and wireless power transfer to sustain the exploration mission for longer durations and even lay a foundation for future high-risk missions.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3