Wavelet Analysis of Microcirculatory Flowmotion Reveals Cardiovascular Regulatory Mechanisms–Data from a Beta-Blocker

Author:

Silva HenriqueORCID,Roux Étienne,Gadeau Alain-PierreORCID,Rodrigues Luis MonteiroORCID

Abstract

A variety of animal models exist for the study of cardiovascular function using many approaches from surgically induced ischemia to genetic manipulation. A murine physiological model was recently proposed for the non-invasive study of peripheral circulation and was strengthened by the wavelet transform analysis (WA) of laser Doppler flowmetry (LDF) signals. WA allows the extraction of cardiac, respiratory, sympathetic, endothelial, and myogenic components from the raw LDF signal. The present study was designed to evaluate the discernment capacity of the model through an analysis of the short-term effects of the well-known hypotensive cardiovascular drug, atenolol. Six male C57/BL6 mice (16 weeks old) were included in the study, with each animal serving as its own control. Following anesthesia with ketamine-xylazine, skin perfusions were continuously assessed in both hindlimbs by LDF during baseline and after two sequential atenolol administrations (2.5 and 5.0 mg/kg, as commonly prescribed). Expected atenolol-induced hypotension was present, associated with a significantly increased heart rate and peripheral perfusion with both dosages. Through the application of WA to the LDF signal, we could detail the mechanisms of the atenolol-induced peripheral perfusion modulation: an immediate amplitude decrease of the cardiac LDF spectrum with an amplitude increase of the sympathetic component (p < 0.05) and the endothelial and myogenic components (non-significant). These data suggested a regulatory crosstalk between the peripheral (baroreceptors) and the microcirculatory units, which ultimately resulted in hypotension, inotropic reduction, and tachycardia. In conclusion, WA offered insight that simply could not be seen with only the perfusion curve and, thus, was an effective tool to investigate this cardiovascular mechanism of regulation.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3