Abstract
With the growth of online information and sudden expansion in the number of electronic documents provided on websites and in electronic libraries, there is difficulty in categorizing text documents. Therefore, a rule-based approach is a solution to this problem; the purpose of this study is to classify documents by using a rule-based. This paper deals with the rule-based approach with the embedding technique for a document to vector (doc2vec) files. An experiment was performed on two data sets Reuters-21578 and the 20 Newsgroups to classify the top ten categories of these data sets by using a document to vector rule-based (D2vecRule). Finally, this method provided us a good classification result according to the F-measures and implementation time metrics. In conclusion, it was observed that our algorithm document to vector rule-based (D2vecRule) was good when compared with other algorithms such as JRip, One R, and ZeroR applied to the same Reuters-21578 dataset.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference51 articles.
1. C4.5: Programs for Machine Learning;Quinlan,1993
2. Knowledge Based Information Systems;Partridge,1994
3. Rule Based Systems for Big Data: A Machine Learning Approach;Han,2015
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献