Abstract
Financial time series have a fractal nature that poses challenges for their dynamical characterization. The Dow Jones Industrial Average (DJIA) is one of the most influential financial indices, and due to its importance, it is adopted as a test bed for this study. The paper explores an alternative strategy to the standard time analysis, by joining the multidimensional scaling (MDS) computational tool and the concepts of distance, entropy, fractal dimension, and fractional calculus. First, several distances are considered to measure the similarities between objects under study and to yield proper input information to the MDS. Then, the MDS constructs a representation based on the similarity of the objects, where time can be viewed as a parametric variable. The resulting plots show a complex structure that is further analyzed with the Shannon entropy and fractal dimension. In a final step, a deeper and more detailed assessment is achieved by associating the concepts of fractional calculus and entropy. Indeed, the fractional-order entropy highlights the results obtained by the other tools, namely that the DJIA fractal nature is visible at different time scales with a fractional order memory that permeates the time series.
Subject
General Physics and Astronomy
Reference87 articles.
1. Chaos & Nonlinear Dynamics in the Financial Markets;Trippi,1995
2. Complex and Chaotic Nonlinear Dynamics: Advances in Economics and Finance, Mathematics and Statistics;Vialar,2009
3. Nonlinear Dynamics in Economics, Finance and the Social Sciences,2010
4. Complex Systems in Finance and Econometrics,2010
5. Calculation of fractional derivatives of noisy data with genetic algorithms
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献