Ubiquitin Carboxyl-Terminal Hydrolases (UCHs): Potential Mediators for Cancer and Neurodegeneration

Author:

Sharma AmitORCID,Liu HongdeORCID,Tobar-Tosse FabianORCID,Chand Dakal Tikam,Ludwig MichaelORCID,Holz Frank G.,Loeffler Karin U.ORCID,Wüllner UllrichORCID,Herwig-Carl Martina C.

Abstract

Emerging evidence suggests an inverse association between cancer and neurodegenerative diseases (NDD). Although phenotypically different, both diseases display a significant imbalance in the ubiquitination/deubiquitination processes. Therefore, we particularly investigated the expression of ubiquitin C-terminal hydrolases (UCHs: UCH-L1, UCH-L3, UCH-L5 and BAP1), a subfamily of deubiquitinating enzymes (DUBs), using publically available datasets (GTEx, TCGA) and observed altered expression of UCH-L1, UCH-L3, UCH-L5 in 17 cancer types. Interestingly, UCH-L1 (known to be enriched in neurons and interacting with the Parkinson’s disease-associated protein α-synuclein) appeared to be a prognostic indicator of unfavorable outcome in endometrial and urothelial cancer, while increased expression of UCH-L3 and UCH-L5 was associated with poor survival in liver and thyroid cancer, respectively. In normal tissues, UCH-L1 was found to be strongly expressed in the cerebral cortex and hypothalamus, while UCH-L3 expression was somewhat higher in the testis. The occurrence of mutation rates in UCHs also suggests that BAP1 and UCH-L5 may play a more dominant role in cancers than UCH-L1 and UCH-L3. We also characterized the functional context and configuration of the repeat elements in the promoter of DUBs genes and found that UCHs are highly discriminatory for catabolic function and are mainly enriched with LINE/CR1 repeats. Regarding the thesis of an inverse association between cancer and NDD, we observed that among all DUBs, UCHs are the one most involved in both entities. Considering a putative therapeutic potential based on presumed common mechanisms, it will be useful to determine whether other DUBs can compensate for the loss of UCH activity under physiological conditions. However, experimental evidence is required to substantiate this argument.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3