N2A Titin: Signaling Hub and Mechanical Switch in Skeletal Muscle

Author:

Nishikawa KiisaORCID,Lindstedt Stan L.,Hessel Anthony,Mishra Dhruv

Abstract

Since its belated discovery, our understanding of the giant protein titin has grown exponentially from its humble beginning as a sarcomeric scaffold to recent recognition of its critical mechanical and signaling functions in active muscle. One uniquely useful model to unravel titin’s functions, muscular dystrophy with myositis (mdm), arose spontaneously in mice as a transposon-like LINE repeat insertion that results in a small deletion in the N2A region of titin. This small deletion profoundly affects hypertrophic signaling and muscle mechanics, thereby providing insights into the function of this specific region and the consequences of its dysfunction. The impact of this mutation is profound, affecting diverse aspects of the phenotype including muscle mechanics, developmental hypertrophy, and thermoregulation. In this review, we explore accumulating evidence that points to the N2A region of titin as a dynamic “switch” that is critical for both mechanical and signaling functions in skeletal muscle. Calcium-dependent binding of N2A titin to actin filaments triggers a cascade of changes in titin that affect mechanical properties such as elastic energy storage and return, as well as hypertrophic signaling. The mdm phenotype also points to the existence of as yet unidentified signaling pathways for muscle hypertrophy and thermoregulation, likely involving titin’s PEVK region as well as the N2A signalosome.

Funder

National Science Foundation

W. M. Keck Foundation

Northern Arizona University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3