Multi-Objective Optimization of Steel Off-Gas in Cogeneration Using the ε-Constraint Method: A Combined Coke Oven and Converter Gas Case Study

Author:

García Sergio García,Montequín Vicente RodríguezORCID,Piloñeta Marina Díaz,Lougedo Susana Torno

Abstract

Increasingly demanding environmental regulations are forcing companies to reduce their impacts caused by their activity while defending the economic viability of their manufacturing processes, especially energy and carbon-intensive ones. Therefore, these challenges must be addressed by posing optimization problems that involve several objectives simultaneously, corresponding to different conditions, and often conflicting between. In this study, the residual gases of an integral steel factory were evaluated and modeled with the goal of developing an optimization problem considering two opposing objectives: CO2 emissions and profit. The problem was first approached in a mono-objective manner, optimizing profit through Mixed Integer Linear Programming (MILP), and then was extended to a bi-objective problem solved by means of the ε-constraint method, to find the Pareto front relating profit and CO2 emissions. The results show that multiobjective optimization is a very valuable resource for plant managers’ decision-making processes. The model makes it possible to identify inflection points from which the level of emissions would increase disproportionately. It gives priority to the consumption of less polluting fuels. The model also makes it possible to make the most of temporary buffers such as the gas holders, adapting to the hourly price of the electricity market. By applying this method, CO2 emissions decrease by more than 3%, and profit amounts up to 14.8% compared to a regular case under normal operating conditions. The sensitivity analysis of the CO2 price and CO2 constraints is also performed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference41 articles.

1. A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China

2. Carbon capture and utilization in the steel industry: challenges and opportunities for chemical engineering

3. Options for Achieving a 50% Cut in Industrial Carbon Emissions by 2050;Allwood,2010

4. World Steel Association World Steel in Figureshttps://www.worldsteel.org/en/dam/jcr:96d7a585-e6b2-4d63-b943-4cd9ab621a91/World%2520Steel%2520in%2520Figures%25202019.pdf

5. Carbon Reduction Programs and Key Technologies in global Steel Industry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reassigning Departure Slots with Preferences of the Airline and Passengers;Transportation Research Record: Journal of the Transportation Research Board;2023-07-05

2. Investigation and Optimisation of the Steady-State Model of a Coke Oven Gas Purification Process;Energies;2022-06-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3