Abstract
Ultra high voltage direct current (UHVDC) transmission is an effective means of long-distance transmission of renewable power generation, which has obtained a lot of research and practical applications. The commutation failure is a common DC transmission fault, which will cause the voltage amplitude of the sending ac grid in UHVDC system to first decrease then increase. The existing transient mathematical models of the wind power generation system (WPGS) are difficult to apply to scenarios where the grid voltage changes continuously. A mathematical model suitable for commutation failure is established to analyze the transient reactive power characteristics of the doubly fed induction generator (DFIG)-based WPGS with the consideration of the crowbar circuit trigger. The correctness of the mathematical model is validated by an experiment based on the control hardware-in-loop (CHIL) platform. Based on the proposed mathematical model, the influence of the crowbar parameters on the reactive power output of the DFIG is analyzed, and the selection of crowbar parameters to suppress the overvoltage of the sending ac grid is investigated. A simulation model is built based on Matlab/Simulink to verify the overvoltage suppression effect of the proposed selection scheme.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献