OptiMEMS: An Adaptive Lightweight Optimal Microgrid Energy Management System Based on the Novel Virtual Distributed Energy Resources in Real-Life Demonstration

Author:

Bintoudi Angelina D.ORCID,Zyglakis LamprosORCID,Tsolakis Apostolos C.ORCID,Gkaidatzis Paschalis A.ORCID,Tryferidis AthanasiosORCID,Ioannidis DimosthenisORCID,Tzovaras DimitriosORCID

Abstract

As microgrids have gained increasing attention over the last decade, more and more applications have emerged, ranging from islanded remote infrastructures to active building blocks of smart grids. To optimally manage the various microgrid assets towards maximum profit, while taking into account reliability and stability, it is essential to properly schedule the overall operation. To that end, this paper presents an optimal scheduling framework for microgrids both for day-ahead and real-time operation. In terms of real-time, this framework evaluates the real-time operation and, based on deviations, it re-optimises the schedule dynamically in order to continuously provide the best possible solution in terms of economic benefit and energy management. To assess the solution, the designed framework has been deployed to a real-life microgrid establishment consisting of residential loads, a PV array and a storage unit. Results demonstrate not only the benefits of the day-ahead optimal scheduling, but also the importance of dynamic re-optimisation when deviations occur between forecasted and real-time values. Given the intermittency of PV generation as well as the stochastic nature of consumption, real-time adaptation leads to significantly improved results.

Funder

Horizon 2020 Framework Programme

General Secretariat for Research and Innovation of Greece

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3