Improvements in Energy Saving and Thermal Environment after Retrofitting with Interior Insulation in Intermittently Cooled Residences in Hot-Summer/Cold-Winter Zone of China: A Case Study in Chengdu

Author:

Ye XinORCID,Lu Jun,Zhang TaoORCID,Wang Yupeng,Fukuda HiroatsuORCID

Abstract

Space cooling is currently the fastest-growing end-user in buildings. The global warming trend combined with increased population and economic development will lead to accelerated growth in space cooling in the future, especially in China. The hot summer and cold winter (HSCW) zone is the most densely populated and economically developed region in China, but with the worst indoor thermal environment. Relatively few studies have been conducted on the actual measurements in the optimization of insulation design under typical intermittent cooling modes in this region. This case study was conducted in Chengdu—the two residences selected were identical in design, but the south bedroom of the case study residence had interior insulation (inside insulation on all opaque interior surfaces of a space) retrofitted in the bedroom area in 2017. In August 2019, a comparative on-site measurement was done to investigate the effect of the retrofit work under three typical intermittent cooling patterns in the real-life scenario. The experimental result shows that interior insulation provides a significant improvement in energy-saving and the indoor thermal environment. The average energy savings in daily cooling energy consumption of the south bedroom is 42.09%, with the maximum reaching 48.91%. In the bedroom with interior insulation retrofit, the indoor temperature is closer to the set temperature and the vertical temperature difference is smaller during the cooling period; when the air conditioner is off, the room remains a comfortable temperature for a slightly longer time.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3