Assessment and Spatiotemporal Variability of Heavy Metals Pollution in Water and Sediments of a Coastal Landscape at the Nile Delta

Author:

Abdelaal AhmedORCID,Abdelkader Ahmed I.,Alshehri Fahad,Elatiar AsmaaORCID,Almadani Sattam A.

Abstract

This study assessed the spatiotemporal variability and pollution grades of heavy metals in water and sediments of Bahr El-Baqar drain, Eastern Nile Delta, Egypt, by integration of geochemical analysis, metal pollution indices, correlation, and multivariate statistical analyses. Twenty samples of water and sediments were collected during 2018 and analyzed for heavy metal concentrations using ICP-OES. Heavy metal contents in the water samples followed the order: Fe > Zn > Al > Pb > Mn > Cu > Ni. The drain sediments were highly contaminated with heavy metals that followed the order: Fe > Al > Mn > V > Zn > Cu > Cr > Ba > Ni > Pb > As. Spatiotemporally, most metals in the drain sediments showed a decreasing trend from upstream (south) to downstream sites (north). Results of principal component analysis (PCA) supported those from the Pearson correlation between investigated heavy metals. In water, Mn, Ni, Pb, Zn, Cu, and Fe showed highly significant correlations. In sediments, Ba, Ni, Zn, Fe, Al, Mn, and V showed strong positive correlations indicating that these metals were derived from similar anthropogenic sources. The calculated metal pollution indices: enrichment factor (EF), contamination factor (CF), pollution load index (PLI), degree of contamination (DC), and index of geo-accumulation (Igeo) indicated high loadings of heavy metals in the drain sediments. EFs revealed low, moderate to significant enrichment, whereas CFs showed low, moderate, and considerable contamination. PLI indicated low, baseline, and progressive contamination, while DC indicated low, moderate, and considerable degree of contamination. Igeo of all investigated metals (except for As; class 1) indicated extremely contaminated sediments (class 7).

Funder

Abdullah Alrushaid Chair for Earth Science Remote Sensing Research

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3