Identification of Hydrothermal Alteration Minerals for Exploring Gold Deposits Based on SVM and PCA Using ASTER Data: A Case Study of Gulong

Author:

Xu Kai,Wang Xiaofeng,Kong ChunfangORCID,Feng Ruyi,Liu Gang,Wu Chonglong

Abstract

Dayaoshan, as an important metal ore-producing area in China, is faced with the dilemma of resource depletion due to long-term exploitation. In this paper, remote sensing methods are used to circle the favorable metallogenic areas and find new ore points for Gulong. Firstly, vegetation interference was removed by using mixed pixel decomposition method with hyperplane and genetic algorithm (GA) optimization; then, altered mineral distribution information was extracted based on principal component analysis (PCA) and support vector machine (SVM) methods; thirdly, the favorable areas of gold mining in Gulong was delineated by using the ant colony algorithm (ACA) optimization SVM model to remove false altered minerals; and lastly, field surveys verified that the extracted alteration mineralization information is correct and effective. The results show that the mineral alteration extraction method proposed in this paper has certain guiding significance for metallogenic prediction by remote sensing.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3