Evaluation of Six Directional Canopy Emissivity Models in the Thermal Infrared Using Emissivity Measurements

Author:

Pérez-Planells LluísORCID,Valor EnricORCID,Niclòs RaquelORCID,Coll CésarORCID,Puchades Jesús,Campos-Taberner ManuelORCID

Abstract

Land surface temperature (LST) is a fundamental physical quantity in a range of different studies, for example in climatological analyses and surface–atmosphere heat flux assessments, especially in heterogeneous and complex surfaces such as vegetated canopies. To obtain accurate LST values, it is important to measure accurately the land surface emissivity (LSE) in the thermal infrared spectrum. In the past decades, different directional emissivity canopy models have been proposed. This paper evaluates six radiative transfer models (FR97, Mod3, Rmod3, 4SAIL, REN15, and CE-P models) through a comparison with in situ emissivity measurements performed using the temperature-emissivity separation (TES) method. The evaluation is done using a single set of rose plants over two different soils with very different spectral behavior. First, using an organic soil, the measurements were done for seven different observation angles, from 0° to 60° in steps of 10°, and for six different values of leaf area index (LAI). Taking into account all LAIs, the bias (and root mean square error, RMSE) obtained were 0.003 (±0.006), −0.004 (±0.005), −0.009 (±0.011), 0.005 (±0.007), 0.004 (±0.007), and 0.005 (±0.007) for FR97, Mod3, Rmod3, 4SAIL, REN 15, and CE-P models, respectively. Second, using an inorganic soil, the measurements were done for six different LAIs but for two different observation angles: 0° and 55°. The bias (and RMSE) obtained were 0.012 (±0.014), 0.004 (±0.007), −0.020 (±0.035), 0.016 (±0.017), 0.013 (±0.015), 0.013 (±0.015) and for FR97, Mod3, Rmod3, 4SAIL, REN15, and CE-P models, respectively. Overall, the Mod3 model appears as the best model in comparison to the TES emissivity reference measurements.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3