Automatic Extraction of Built-Up Areas from Very High-Resolution Satellite Imagery Using Patch-Level Spatial Features and Gestalt Laws of Perceptual Grouping

Author:

Chen Yixiang,Lv Zhiyong,Huang Bo,Zhang Pengdong,Zhang Yu

Abstract

Automatic extraction of built-up areas from very high-resolution (VHR) satellite images has received increasing attention in recent years. However, due to the complexity of spectral and spatial characteristics of built-up areas, it is still a challenging task to obtain their precise location and extent. In this study, a patch-based framework was proposed for unsupervised extraction of built-up areas from VHR imagery. First, a group of corner-constrained overlapping patches were defined to locate the candidate built-up areas. Second, for each patch, its salient textures and structural characteristics were represented as a feature vector using integrated high-frequency wavelet coefficients. Then, inspired by visual perception, a patch-level saliency model of built-up areas was constructed by incorporating Gestalt laws of proximity and similarity, which can effectively describe the spatial relationships between patches. Finally, built-up areas were extracted through thresholding and their boundaries were refined by morphological operations. The performance of the proposed method was evaluated on two VHR image datasets. The resulting average F-measure values were 0.8613 for the Google Earth dataset and 0.88 for the WorldView-2 dataset, respectively. Compared with existing models, the proposed method obtains better extraction results, which show more precise boundaries and preserve better shape integrity.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lightweight Multilevel Feature-Fusion Network for Built-Up Area Mapping from Gaofen-2 Satellite Images;Remote Sensing;2024-02-18

2. Urban anthropogenic heat index derived from satellite data;International Journal of Applied Earth Observation and Geoinformation;2023-04

3. Recognition of Characters using PCE based Convolutional LSTM Networks from Palaeographic Writings;2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT);2023-02-11

4. Built-Up Area Extraction Combing Densely Connected Dual-Attention Network and Multiscale Context;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

5. Three-dimensional visualization of thermal environments in urban canyons;Geocarto International;2022-08-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3