Abstract
The wind wake on the lee side of Hainan Island in the winter covers the southwest entrance of Beibu Gulf (or Gulf of Tonkin) and is essential to regional ocean dynamics. Using multiple satellite observations including advanced synthetic aperture radar (ASAR), we revisited the wake process during the winter of 2011. Asymmetric oceanic thermal responses were found with a warm band expanding northwestwardly while a cold tongue formed to the southeast. Combining satellite observations, model simulations, and reanalysis data, heat advection terms (ADV) are reconstructed and compared to air-sea heat flux terms. The observed thermal evolution process across the wake footprint is closely related to the balanced spatial variability from the Ekman ADV, the barotropic geostrophic ADV, and the latent heat flux (LHF), which are all on the order of 10−5 K·m·s−1. Specifically, the Ekman ADV tends to heat the northwestern side of the wake and cool the southeastern side, while the geostrophic ADV compensates with the Ekman ADV across the wake footprint. This study reveals detailed oceanic responses associated with the wind wake and clarifies the contribution of ADV to the asymmetric spatial thermal variabilities. The identified role of heat advection on a sub-seasonal timescale may further benefit the understanding of regional oceanic dynamics.
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献