Remote-Sensing Monitoring of Grassland Degradation Based on the GDI in Shangri-La, China

Author:

Yang Yanlin,Wang Jinliang,Chen YunORCID,Cheng Feng,Liu GuangjieORCID,He Zenghong

Abstract

Grassland resources are important land resources. However, grassland degradation has become evident in recent years, which has reduced the function of soil and water conservation and restricted the development of animal husbandry. Timely and accurate monitoring of grassland changes and understanding the degree of degradation are the foundation for the scientific use of grasslands. The grassland degradation index of ground comprehensive evaluation (grassland degradation index, GDIg) is a digital expression of grassland growth that can accurately indicate the degradation of grasslands. In this research, the accuracy of GDIg in evaluating grassland degradation is discussed; the typical areas of grassland degradation in Shangri-La City, i.e., the towns of Jiantang and Xiaozhongdian, are selected as the research area. Through a field survey and spectroscopy combined with Huanjing-1 (HJ-1) satellite image data, grassland degradation was monitored in the study area from 2008 to 2017. The results show that: (1) GDIg based on six indicators, namely, above-ground biomass, cover level, height, biomass of edible herbage, biomass of toxic weeds, and species richness, can effectively indicate grassland degradation, with the accuracy of the degradation grade assessment reaching 98.6%. (2) The correlation between the GDIg and the grey values of 4 wavebands and 7 types of vegetation indexes derived from the HJ-1 is analysed, and the degraded grassland inversion model was built and revised based on HJ-1 data. The grassland degradation evaluation index of remote sensing (GDIrs) model indicates that grassland degradation is proportional to the ratio vegetation index (RVI). (3) The grassland area was 405.40 km2 in the initial monitoring period, accounting for 17.26% of the study area, while at the end of the monitoring period, the area was 338.87 km2, with a loss of 66.53 km2. From 2008 to 2017, the area of non-degraded and slightly degraded grassland in the study area presented a downward trend, with decreases of 59.87 km2 and 49.93 km2, respectively. In contrast, the area of moderately degraded grassland increased by 41.17 km2 from 91.58 km2 in 2008 to 132.74 km2 in 2017, accounting for 39.17% of the grassland. The area of severely degraded grassland was 78.32 km2, accounting for 23.11% of the grassland in 2017. (4) The degraded grasslands in the study area mainly transformed into the degradation-enhanced (deterioration) type. As the transformation rate gradually slows down, the current situation of grassland degradation is not hopeful.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3