Application of Probabilistic and Machine Learning Models for Groundwater Potentiality Mapping in Damghan Sedimentary Plain, Iran

Author:

Arabameri AlirezaORCID,Roy Jagabandhu,Saha SunilORCID,Blaschke ThomasORCID,Ghorbanzadeh OmidORCID,Tien Bui DieuORCID

Abstract

Groundwater is one of the most important natural resources, as it regulates the earth’s hydrological system. The Damghan sedimentary plain area, located in the region of a semi-arid climate of Iran, has very critical conditions of groundwater due to massive pressure on it and is in need of robust models for identifying the groundwater potential zones (GWPZ). The main goal of the current research is to prepare a groundwater potentiality map (GWPM) considering the probabilistic, machine learning, data mining, and multi-criteria decision analysis (MCDA) approaches. For this purpose, 80 wells collected from the Iranian groundwater resource department and field investigation with global positioning system (GPS), have been selected randomly and considered as the groundwater inventory datasets. Out of 80 wells, 56 (70%) wells have been brought into play for modeling and 24 (30%) for validation purposes. Elevation, slope, aspect, convergence index (CI), rainfall, drainage density (Dd), distance to river, distance to fault, distance to road, lithology, soil type, land use/land cover (LU/LC), normalized difference vegetation index (NDVI), topographic wetness index (TWI), topographic position index (TPI), and stream power index (SPI) have been used for modeling purpose. The area under the receiver operating characteristic (AUROC), sensitivity (SE), specificity (SP), accuracy (AC), mean absolute error (MAE), and root mean square error (RMSE) are used for checking the goodness-of-fit and prediction accuracy of approaches to compare their performance. In addition, the influence of groundwater determining factors (GWDFs) on groundwater occurrence was evaluated by performing a sensitivity analysis model. The GWPMs, produced by technique for order preference by similarity to ideal solution (TOPSIS), random forest (RF), binary logistic regression (BLR), weight of evidence (WoE) and support vector machine (SVM) have been classified into four categories, i.e., low, medium, high and very high groundwater potentiality with the help of the natural break classification methods in the GIS environment. The very high groundwater potentiality class is covered 15.09% for TOPSIS, 15.46% for WoE, 25.26% for RF, 15.47% for BLR, and 18.74% for SVM of the entire plain area. Based on sensitivity analysis, distance from river, and drainage density represent significantly effects on the groundwater occurrence. validation results show that the BLR model with best prediction accuracy and goodness-of-fit outperforms the other five models. Although, all models have very good performance in modeling of groundwater potential. Results of seed cell area index model that used for checking accuracy classification of models show that all models have suitable performance. Therefore, these are promising models that can be applied for the GWPZs identification, which will help for some needful action of these areas.

Funder

Austrian Science Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference97 articles.

1. Surface Water and Groundwater Resources of Ethiopia: Potentials and Challenges of Water Resources Development;Berhanu,2014

2. High demand in a land of water scarcity: Iran;Zehtabian,2001

3. Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS

4. National Geographic, Almanac of Geography,2005

5. Cost-effective Approaches for Sustainable Groundwater Management in Alluvial Aquifer Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3