Numerical Investigation on the Aerodynamic and Aeroacoustic Characteristics in New Energy Vehicle Cooling Fan with Shroud

Author:

Huang Baoding1,Xu Jinqiu2,Wang Jingxin2,Xu Linjie2,Chen Xiaoping1ORCID

Affiliation:

1. Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China

2. Key Laboratory of Smart Thermal Management Science & Technology for Vehicles of Zhejiang Province, Zhejiang Yinlun Machinery Co., Ltd., Taizhou 317200, China

Abstract

The cooling fan is one of the important noise sources for new energy vehicles, and the research on its aerodynamic and aeroacoustic characteristics is of great help to improve the noise, vibration and harshness performance of new energy vehicles. However, most of these studies focus on the impeller, and little consideration has been given to the study of the shroud. Based on the coupling calculation method of large eddy simulation and the Ffowcs-Williams and Hawkings acoustics model, the aerodynamic and aeroacoustic characteristics in a cooling fan with the shroud are investigated at flow rates from 0.623 kg/s to 1.019 kg/s (where 0.865 kg/s is the flow rate corresponding to the best efficiency point). The accuracy of numerical simulation results is verified by the grid independence verification and the comparison of experimental data. Research shows that several large-scale vortex structures are observed in the clearance between the impeller and the shroud. The maximum peak-to-peak values of pressure fluctuation at different flow rates occur in the intermediate section or outlet section of the shroud. Although the shroud contributes relatively less to the far field noise, its different distribution may change the position of the maximum sound pressure level. The dominant frequency of pressure fluctuation equals the blade passage frequency (BPF) and the maximum SPL is around the BPF, both of which are independent of flow rates. The maximum SPL and the amplitude of the dominant frequency decrease as the flow rate increases.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3