Semantic-Aware Fusion Network Based on Super-Resolution

Author:

Xu Lingfeng1,Zou Qiang123

Affiliation:

1. School of Microelectronics, Tianjin University, Tianjin 300072, China

2. Tianjin International Joint Research Center for Internet of Things, Tianjin 300072, China

3. Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin 300072, China

Abstract

The aim of infrared and visible image fusion is to generate a fused image that not only contains salient targets and rich texture details, but also facilitates high-level vision tasks. However, due to the hardware limitations of digital cameras and other devices, there are more low-resolution images in the existing datasets, and low-resolution images are often accompanied by the problem of losing details and structural information. At the same time, existing fusion algorithms focus too much on the visual quality of the fused images, while ignoring the requirements of high-level vision tasks. To address the above challenges, in this paper, we skillfully unite the super-resolution network, fusion network and segmentation network, and propose a super-resolution-based semantic-aware fusion network. First, we design a super-resolution network based on a multi-branch hybrid attention module (MHAM), which aims to enhance the quality and details of the source image, enabling the fusion network to integrate the features of the source image more accurately. Then, a comprehensive information extraction module (STDC) is designed in the fusion network to enhance the network’s ability to extract finer-grained complementary information from the source image. Finally, the fusion network and segmentation network are jointly trained to utilize semantic loss to guide the semantic information back to the fusion network, which effectively improves the performance of the fused images on high-level vision tasks. Extensive experiments show that our method is more effective than other state-of-the-art image fusion methods. In particular, our fused images not only have excellent visual perception effects, but also help to improve the performance of high-level vision tasks.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3