Influence of Rainfall Events and Surface Inclination on Overland and Subsurface Runoff Formation on Low-Permeable Soil

Author:

Gruchot AndrzejORCID,Zydroń TymoteuszORCID,Wałęga Andrzej,Pařílková Jana,Stanisz JacekORCID

Abstract

This paper presents the results of laboratory tests that allowed us to determine the effect of the soil surface inclination and its initial moisture content on the formation of overland and subsurface runoff. The experiments were carried out for the soil that is commonly present in the southern part of Poland, including the Outer Carpathians. The results of these measurements served as a reference for overland runoff calculations using the Richards model, simplified Green–Ampt model, and the empirical model (MSME). The results of the measurements showed that, for low-permeable soil, overland runoff is the dominant form. It was shown that a slope in the range of 2.5–5.0% does not have a significant effect on the amount of overland runoff, but affects its dynamics. The measurements also showed that the starting time and amount of overland runoff are strictly associated with the initial soil moisture content. High soil moisture content in the period preceding the onset of rainfall causes faster generation and an increase in overland runoff, which is caused by the saturation of the surface layer of the soil. This mechanism was confirmed by the results of calculations using the Richards model and measurements of the electrical resistance of the soil. Theoretical calculations showed that the results of the runoff calculations using the Richards and Green–Ampt models are strongly dependent on the hydraulic properties of the soil adopted for the analysis. It was also demonstrated that the modified MSME model satisfactorily estimates the amount of overland and subsurface runoff, but requires parameter calibration based on existing hydrological data.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3