Optimization of Water and Energy Spatial Patterns in the Cascade Pump Station Irrigation District

Author:

Bai ChenORCID,Yao Lixiao,Wang Cheng,Zhao Yongxuan,Peng Weien

Abstract

Cascade pump station irrigation districts (CPSIDs) consume large quantities of water and energy. Water- and energy-saving results and income increases are guaranteed under the sustainable development of the CPSID. The CPSID is divided into several sub-districts based on the elevation difference of topography and pump station distributions. The spatial patterns of crops and irrigation technologies can be changed by adjusting crop planting structures and developing drip irrigation in each sub-district. Its optimization will change the spatial patterns of irrigation water and energy consumption to achieve water- and energy-saving results, increase income, and provide an ecological advantage. To obtain the optimal spatial patterns of water and energy in the CPSID, a multi-objective linear programming model of minimum irrigation water consumption, minimum energy consumption, and highest crop output value was established. This model was applied to the Jingdian Phase I Irrigation District in northwest China, and an optimal scheme of water and energy spatial patterns was obtained. Compared with the present situation, the optimal scheme could save water by 26.18%, save energy by 29.38%, and increase income by 29.55%. The increased investment in the drip irrigation project would lead to reduced irrigation water and energy consumption and increased crop output value. The research results provide a scientific basis for the sustainable development of agriculture and ecological environment protection in the CPSID.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3