Abstract
The aim of this study is to provide insights regarding the economic viability of and energy flows within a renewable energy community based on a linear optimisation model with peer-to-peer electricity trading. Different technologies, such as PV, heat pumps, electric vehicles, and a community battery storage, are modelled. With the objective of achieving a cost-optimal solution for the whole community, the individual impacts of different technologies, as well as their permutations, are investigated. Therefrom, financial and environmental advantages and disadvantages for individual participants and the whole community can be derived. The results indicate that customers who are equipped with a combination of PV systems, heat pumps, and EVs achieve better individual results compared to those with lower levels of technology. Especially when heat pumps are involved, the amounts of PV electricity generated can be used with high efficiency, increasing the benefits of energy community participation. Moreover, the higher the level of electricity-based technologies within the community is, the lower the conventional grid feed-in becomes. An additional implementation of a community battery storage can further reduce these amounts and, thus, the grid burden. Apart from the financial benefits, the installation of additional assets and, thus, reduced grid feed-in contribute to the reduction of CO2-emissions. This study’s results can aid in making decisions regarding investments and energy community composition, as well as in the funding decisions of policymakers.
Funder
National Foundation for Research, Technology and Development; Call Laura Bassi 4.0
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Reference48 articles.
1. Clean Energy for All Europeans Package,2019
2. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources;Off. J. Eur. Union,2018
3. Directive (EU) 2019/944 of the European Parliament and of the Council of 5 June 2019 on common rules for the internal market for electricity and amending Directive 2012/27/EU;Off. J. Eur. Union,2019
4. Exploring the transition potential of renewable energy communities
5. Typology of future clean energy communities: An exploratory structure, opportunities, and challenges
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献