LW-YOLO: Lightweight Deep Learning Model for Fast and Precise Defect Detection in Printed Circuit Boards

Author:

Yuan Zhaohui1,Tang Xiangyang1ORCID,Ning Hao1,Yang Zhengzhe1

Affiliation:

1. School of Software, East China Jiaotong University, Nanchang 330013, China

Abstract

Printed circuit board (PCB) manufacturing processes are becoming increasingly complex, where even minor defects can impair product performance and yield rates. Precisely identifying PCB defects is critical but remains challenging. Traditional PCB defect detection methods, such as visual inspection and automated technologies, have limitations. While defects can be readily identified based on symmetry, the operational aspect proves to be quite challenging. Deep learning has shown promise in defect detection; however, current deep learning models for PCB defect detection still face issues like large model size, slow detection speed, and suboptimal accuracy. This paper proposes a lightweight YOLOv8 (You Only Look Once version 8)-based model called LW-YOLO (Lightweight You Only Look Once) to address these limitations. Specifically, LW-YOLO incorporates a bidirectional feature pyramid network for multiscale feature fusion, a Partial Convolution module to reduce redundant calculations, and a Minimum Point Distance Intersection over Union loss function to simplify optimization and improve accuracy. Based on the experimental data, LW-YOLO achieved an mAP0.5 of 96.4%, which is 2.2 percentage points higher than YOLOv8; the precision reached 97.1%, surpassing YOLOv8 by 1.7 percentage points; and at the same time, LW-YOLO achieved an FPS of 141.5. The proposed strategies effectively enhance efficiency and accuracy for deep-learning-based PCB defect detection.

Funder

Province Science Foundation of Jiangxi

Publisher

MDPI AG

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3