Nanoframes as a Resilient Candidate for a Broader Spectra of Catalysis Challenges

Author:

Ahmad Fawad1ORCID,Ain Qurat ul1,Zahid Shafaq1,Akitsu Takashiro2ORCID

Affiliation:

1. Department of Chemistry, University of Wah, Quaid Avenue, Wah Cantt 47040, Pakistan

2. Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan

Abstract

Metal nanoframes have gained tremendous attention in the domain of modern research and development due to their distinctive 3D spatial structure, efficient physiochemical properties, and comparatively good activity. Different strategies have been implicated by the researchers to design nanoframes of varying chemical natures and shapes. Most of the synthetic protocols being adopted to design nanoframes consist of two main steps: nucleation and the growth of solid particles and, secondly, excavation of the interiors. In this context, many synthetic methods are overviewed. To show their unprecedented performance or activity, a few applications in catalysis, biomedicine, theranostics, SERS, the sensing of different materials, the reduction of CO2, etc., are also discussed.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3