Solving Boundary Value Problems by Sinc Method and Geometric Sinc Method

Author:

Darweesh Amer1ORCID,Al-Khaled Kamel1ORCID,Algamara Mohammed1

Affiliation:

1. Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110, Jordan

Abstract

This paper introduces an efficient numerical method for approximating solutions to geometric boundary value problems. We propose the multiplicative sinc–Galerkin method, tailored specifically for solving multiplicative differential equations. The method utilizes the geometric Whittaker cardinal function to approximate functions and their geometric derivatives. By reducing the geometric differential equation to a system of algebraic equations, we achieve computational efficiency. The method not only proves to be computationally efficient but also showcases a valuable symmetric property, aligning with inherent patterns in geometric structures. This symmetry enhances the method’s compatibility with the often-present symmetries in geometric boundary value problems, offering both computational advantages and a deeper understanding of geometric calculus. To demonstrate the reliability and efficiency of the proposed method, we present several examples with both homogeneous and non-homogeneous boundary conditions. These examples serve to validate the method’s performance in practice.

Publisher

MDPI AG

Reference22 articles.

1. Improved shooting techniques for linear boundary value problems;Garg;Comput. Methods Appl. Mech. Eng.,1980

2. An efficient finite difference method for two-point boundary value problems;Chawla;Neural Parallel Sci. Comput.,1996

3. Zienkiewicz, O.C., Morgan, K., and Morgan, K. (2006). Finite Elements and Approximation, Courier Corporation.

4. On the least-squares method;Jiang;Comput. Methods Appl. Mech. Eng.,1998

5. A collocation method for boundary value problems;Russell;Numer. Math.,1972

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3