Deep Q-Learning-Based Buffer-Aided Relay Selection for Reliable and Secure Communications in Two-Hop Wireless Relay Networks

Author:

Zhang Cheng12,Liao Xuening123ORCID,Wu Zhenqiang12ORCID,Qiu Guoyong12,Chen Zitong2,Yu Zhiliang4

Affiliation:

1. Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi’an 710062, China

2. School of Computer Science, Shaanxi Normal University, Xi’an 710119, China

3. Shaanxi Key Laboratory for Network Computing and Security Technology, Xi’an 710048, China

4. School of Mathematics and Computer Science, Shaanxi University of Technology, Hanzhong 723001, China

Abstract

This paper investigates the problem of buffer-aided relay selection to achieve reliable and secure communications in a two-hop amplify-and-forward (AF) network with an eavesdropper. Due to the fading of wireless signals and the broadcast nature of wireless channels, transmitted signals over the network may be undecodable at the receiver end or have been eavesdropped by eavesdroppers. Most available buffer-aided relay selection schemes consider either reliability or security issues in wireless communications; rarely is work conducted on both reliability and security issues. This paper proposes a buffer-aided relay selection scheme based on deep Q-learning (DQL) that considers both reliability and security. By conducting Monte Carlo simulations, we then verify the reliability and security performances of the proposed scheme in terms of the connection outage probability (COP) and secrecy outage probability (SOP), respectively. The simulation results show that two-hop wireless relay network can achieve reliable and secure communications by using our proposed scheme. We also performed comparison experiments between our proposed scheme and two benchmark schemes. The comparison results indicate that our proposed scheme outperforms the max-ratio scheme in terms of the SOP.

Funder

National Natural Science Foundation of China

Shaanxi Key Laboratory for Network Computing and Security Technology

Fundamental Research Funds for the Central Universities

Scientific Research Plan of Shaanxi Provincial Department of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3