An Earth Observation Framework in Service of the Sendai Framework for Disaster Risk Reduction 2015–2030

Author:

Li Boyi1234ORCID,Gong Adu1234,Liu Longfei5,Li Jing1234,Li Jinglin6,Li Lingling6,Pan Xiang6,Chen Zikun6

Affiliation:

1. State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

2. Beijing Engineering Research Center for Global Land Remote Sensing Products, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

3. Key Laboratory of Environmental Change and Natural Disasters, Ministry of Education, Beijing Normal University, Beijing 100875, China

4. Beijing Key Laboratory of Environmental Remote Sensing and Digital City, Beijing Normal University, Beijing 100875, China

5. National Disaster Reduction Center of China, Ministry of Emergency Management of the People’s Republic of China, Beijing 100124, China

6. Faculty of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China

Abstract

The Sendai Framework for Disaster Risk Reduction 2015–2030 (SFDRR) proposed seven targets comprising 38 quantified indicators and various sub-indicators to monitor the progress of disaster risk and loss reduction efforts. However, challenges persist regarding the availability of disaster-related data and the required resources to address data gaps. A promising way to address this issue is the utilization of Earth observation (EO). In this study, we proposed an EO-based disaster evaluation framework in service of the SFDRR and applied it to the context of tropical cyclones (TCs). We first investigated the potential of EO in supporting the SFDRR indicators, and we then decoupled those EO-supported indicators into essential variables (EVs) based on regional disaster system theory (RDST) and the TC disaster chain. We established a mapping relationship between the measurement requirements of EVs and the capabilities of EO on Google Earth Engine (GEE). An end-to-end framework that utilizes EO to evaluate the SFDRR indicators was finally established. The results showed that the SFDRR contains 75 indicators, among which 18.7% and 20.0% of those indicators can be directly and indirectly supported by EO, respectively, indicating the significant role of EO for the SFDRR. We provided four EV classes with nine EVs derived from the EO-supported indicators in the proposed framework, along with available EO data and methods. Our proposed framework demonstrates that EO has an important contribution to supporting the implementation of the SFDRR, and that it provides effective evaluation solutions.

Funder

National Key Research and Development Program of China

Open Fund of State Key Laboratory of Remote Sensing Science and Beijing Engineering Research Center for Global Land Remote Sensing Products

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference48 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3