Reducing Redundancy in Maps without Lowering Accuracy: A Geometric Feature Fusion Approach for Simultaneous Localization and Mapping

Author:

Li Feiya1,Fu Chunyun1ORCID,Sun Dongye1,Marzbani Hormoz2ORCID,Hu Minghui1

Affiliation:

1. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China

2. School of Engineering, RMIT University, Bundoora, VIC 3083, Australia

Abstract

Geometric map features, such as line segments and planes, are receiving increasing attention due to their advantages in simultaneous localization and mapping applications. However, large structures in different environments are very likely to appear repeatedly in several consecutive time steps, resulting in redundant features in the final map. These redundant features should be properly fused, in order to avoid ambiguity and reduce the computation load. In this paper, three criteria are proposed to evaluate the closeness between any two features extracted at two different times, in terms of their included angle, feature circle overlapping and relative distance. These criteria determine whether any two features should be fused in the mapping process. Using the three criteria, all features in the global map are categorized into different clusters with distinct labels, and a fused feature is then generated for each cluster by means of least squares fitting. Two competing methods are employed for comparative verification. The comparison results indicate that using the commonly used KITTI dataset and the commercial software PreScan, the proposed feature fusion method outperforms the competing methods in terms of conciseness and accuracy.

Funder

Chongqing Technology Innovation and Application Development Project

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3