Archaeological Predictive Modeling Using Machine Learning and Statistical Methods for Japan and China

Author:

Wang Yuan1,Shi Xiaodan12,Oguchi Takashi13ORCID

Affiliation:

1. Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8563, Japan

2. School of Business, Society and Technology, Mälardalens University, 72123 Västerås, Sweden

3. Center for Spatial Information Science, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8568, Japan

Abstract

Archaeological predictive modeling (APM) is an essential method for quantitatively assessing the probability of archaeological sites present in a region. It is a necessary tool for archaeological research and cultural heritage management. In particular, the predictive modeling process could help us understand the relationship between past human civilizations and the natural environment; moreover, a better understanding of the mechanisms of the human–land relationship can provide new ideas for sustainable development. This study aims to investigate the impact of topographic and hydrological factors on archaeological sites in the Japanese archipelago and Shaanxi Province, China and proposes a hybrid integration approach for APM. This approach employed a conditional attention mechanism (AM) using deep learning and a frequency ratio (FR) model, in addition to a separate FR model and the widely-used machine learning MaxEnt method. The models’ outcomes were cross-checked using the four-fold cross-validation method, and the models’ performances were compared using the area under the receiver operating characteristic curve (AUC) and Kvamme’s Gain. The results showed that in both study areas, the AM_FR model exhibited the most satisfactory performances.

Funder

JSPS Grants-in-Aid for Scientific Research

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3