Effect of Reversal of Conservation Tillage on Soil Nutrient Availability and Crop Nutrient Uptake in Soybean in the Vertisols of Central India

Author:

Singh Dharmendra,Lenka SangeetaORCID,Lenka Narendra Kumar,Trivedi Sudhir Kumar,Bhattacharjya SudeshnaORCID,Sahoo Sonalika,Saha Jayanta Kumar,Patra Ashok KumarORCID

Abstract

Effect of conservation tillage on crop performance and soil properties has been studied extensively under different agro-climatic situations. However, the impact of reversal from conservation tillage to conventional tillage on crop growth and soil nutrient release is rarely addressed. Thus, this study was conducted by converting half of the eight years old conservation tillage experiment to the conventional one with a similar level of residue return to compare the effect on soil nutrient availability and nutrient uptake in soybean crops in the Vertisols of Central India. The conservation tillage treatments included no-tillage (NT) and reduced tillage (RT) with 100% NPK (T1), 100% NPK + farmyard manure (FYM) at 1.0 Mg-carbon (C)/ha (T2), and 100% NPK + FYM at 2.0 Mg-C/ha (T3). After eight years of the experiment, the RT and NT treatments were subjected to conventional tillage, and thus the tillage treatments were RT-CT, RT, NT, and NT-CT. After tillage reversal for three growing seasons, soybean yield and nutrient uptake (N, P, K) got significantly influenced by the tillage and nutrient management. Averaged across nutrient treatments, NT showed highest soil organic carbon (SOC) content (8.4 g/kg) in the surface 0–5 cm layer. However, at 5–15 cm depth, the SOC was greater in the RT-CT treatment by 14% over RT and by 5% in the NT-CT treatment over NT. The soil nutrient availability (N and P) was not significantly (p > 0.05) affected by the interaction effect of tillage and nutrient on the surface soil layer (0–5 cm). Interaction effect of tillage and nutrient was significant on available P content at 5–15 cm soil depth. In contrast to N, soil available P relatively increased with reversal of tillage in both NT and RT. Tillage reversal (NT-CT, RT-CT) and RT had significantly higher available potassium than NT in 0–5 and 5–15 cm soil layers. Among the treatments, NT-CT-T3 showed significantly higher seed N (85.49 kg/ha), P (10.05 kg/ha), and K (24.51 kg/ha) uptake in soybean. The study indicates conventional tillage with residue returns and integrated nutrient management could be a feasible alternative to overcome the limitations of no-till farming in the deep black Vertisols of Central India.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference64 articles.

1. Conservation Tillage for Climate Change Mitigation – The Reality

2. Greenhouse gas emission and soil properties as influenced by wheat biomass burning in Vertisols of central India;Lenka;Curr. Sci.,2014

3. Conservation tillage and manure effect on soil aggregation, yield and energy requirement for wheat (Triticum aestivum) in vertisols;Singh;Indian J. Agric. Sci.,2014

4. Soil-profile distribution of primary and secondary plant-available nutrients under conventional and no tillage

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3