Temporal Relationship-Aware Treadmill Exercise Test Analysis Network for Coronary Artery Disease Diagnosis

Author:

Wei Jianze1ORCID,Pan Bocheng1,Gan Yu23,Li Xuedi23,Liu Deping23,Sang Botao24,Gao Xingyu1

Affiliation:

1. Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China

2. Cardiology Department, Beijing Hospital, Beijing 100730, China

3. National Center of Gerontology, National Health Commission Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China

4. University of Chinese Academy of Sciences, Beijing 100006, China

Abstract

The treadmill exercise test (TET) serves as a non-invasive method for the diagnosis of coronary artery disease (CAD). Despite its widespread use, TET reports are susceptible to external influences, heightening the risk of misdiagnosis and underdiagnosis. In this paper, we propose a novel automatic CAD diagnosis approach. The proposed approach introduces a customized preprocessing method to obtain clear electrocardiograms (ECGs) from individual TET reports. Additionally, it presents TETDiaNet, a novel neural network designed to explore the temporal relationships within TET ECGs. Central to TETDiaNet is the TETDia block, which mimics clinicians’ diagnostic processes to extract essential diagnostic information. This block encompasses an intra-state contextual learning module and an inter-state contextual learning module, modeling the temporal relationships within a single state and between states, respectively. These two modules help the TETDia block to capture effective diagnosis information by exploring the temporal relationships within TET ECGs. Furthermore, we establish a new TET dataset named TET4CAD for CAD diagnosis. It contains simplified TET reports for 192 CAD patients and 224 non-CAD patients, and each patient undergoes coronary angiography for labeling. Experimental results on TET4CAD underscore the superior performance of the proposed approach, highlighting the discriminative value of the temporal relationships within TET ECGs for CAD diagnosis.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3