Conserved Active-Site Residues Associated with OAS Enzyme Activity and Ubiquitin-Like Domains Are Not Required for the Antiviral Activity of goOASL Protein against Avian Tembusu Virus

Author:

Chen Shun,Yang Chao,Zhang Jinyue,Wu Zhen,Wang Mingshu,Jia Renyong,Zhu Dekang,Liu Mafeng,Yang Qiao,Wu Ying,Zhao Xinxin,Zhang Shaqiu,Liu Yunya,Zhang Ling,Yu Yanling,You Yu,Cheng AnchunORCID

Abstract

Interferon (IFN)-induced 2′-5′-oligoadenylate synthetase (OAS) proteins exhibit an extensive and efficient antiviral effect against flavivirus infection in mammals and birds. Only the 2′-5′-oligoadenylate synthetase-like (OASL) gene has been identified thus far in birds, except for ostrich, which has both OAS1 and OASL genes. In this study, we first investigated the antiviral activity of goose OASL (goOASL) protein against a duck-origin Tembusu virus (DTMUV) in duck embryo fibroblast cells (DEFs). To investigate the relationship of conserved amino acids that are related to OAS enzyme activity and ubiquitin-like (UBL) domains with the antiviral activity of goOASL, a series of mutant goOASL plasmids was constructed, including goOASL-S64C/D76E/D78E/D144T, goOASL∆UBLs and goOASL∆UBLs-S64C/D76E/D78E/D144T. Interestingly, all these mutant proteins significantly inhibited the replication of DTMUV in DEFs in a dose-dependent manner. Immunofluorescence analysis showed that the goOASL, goOASL-S64C/D76E/D78E/D144T, goOASL∆UBLs and goOASL∆UBLs-S64C/D76E/D78E/D144T proteins were located not only in the cytoplasm where DTMUV replicates but also in the nucleus of DEFs. However, the goOASL and goOASL mutant proteins were mainly colocalized with DTMUV in the cytoplasm of infected cells. Our data indicated that goOASL could significantly inhibit DTMUV replication in vitro, while the active-site residues S64, D76, D78 and D144, which were associated with OAS enzyme activity, the UBL domains were not required for the antiviral activity of goOASL protein.

Funder

Agriculture Research System of China

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3