Abstract
We can think of forests as multiscale multispecies networks, constantly evolving toward a climax or potential natural community—the successional process-pattern of natural regeneration that exhibits sensitivity to initial conditions. This is why I look into forest succession in light of the Red Queen hypothesis and focus on the key aspects of ecological self-organisation: dynamical criticality, evolvability and intransitivity. The idea of the review is that forest climax should be associated with habitat dynamics driven by a large continuum of ecologically equivalent time scales, so that the same ecological conclusions could be drawn statistically from any scale. A synthesis of the literature is undertaken in order to (1) present the framework for assessing habitat dynamics and (2) present the types of successional trajectories based on tree regeneration mode in forest gaps. In general, there are four types of successional trajectories within the process-pattern of forest regeneration that exhibits sensitivity to initial conditions: advance reproduction specialists, advance reproduction generalists, early reproduction generalists and early reproduction specialists. A successional trajectory is an expression of a fractal connectivity among certain patterns of natural regeneration in the multiscale multispecies networks of landscape habitats. Theoretically, the organically derived measures of pattern diversity, integrity and complexity, determined by the rates of recruitment, growth and mortality of forest tree species, are the means to test the efficacy of specific interventions to avert the disturbance-related decline in forest regeneration. That is of relevance to the emerging field of biocomplexity research.
Reference142 articles.
1. GIS Coop: networks of silvicultural trials for supporting forest management under changing environment
2. How Quickly do Tropical Forests Recover from Disturbance?https://www.kew.org/blogs/kew-science/how-quickly-do-tropical-forests-recover-from-disturbance
3. Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation;Chazdon,2014
4. Revisiting forest impact on atmospheric water vapor transport and precipitation
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献