Corrosiveness of Thermally Modified Wood

Author:

Zelinka SamuelORCID,Passarini Leandro,Matt Frederick,Kirker Grant

Abstract

Thermally modified wood is becoming commercially available in North America for use in outdoor applications. While there have been many studies on how thermal modification affects the dimensional stability, water vapor sorption, and biodeterioration of wood, little is known about whether thermally modified wood is corrosive to metal fasteners and hangers used to hold these members in place. As thermally modified wood is used in outdoor applications, it has the potential to become wet which may lead to corrosion of embedded fasteners. Here, we examine the corrosiveness of thermally modified ash and oak in an exposure test where stainless steel, hot-dip galvanized steel, and carbon steel nails are driven into wood and exposed to a nearly 100% relative humidity environment at 27 °C for one year. The corrosion rates were compared against control specimens of untreated and preservative-treated southern pine. Stainless steel fasteners did not corrode in any specimens regardless of the treatment. The thermal modification increased the corrosiveness of the ash and oak, however, an oil treatment that is commonly applied by the manufacturer to the wood after the heat treatment reduced the corrosiveness. The carbon steel fasteners exhibited higher corrosion rates in the thermally modified hardwoods than in the preservative-treated pine control. Corrosion rates of galvanized fasteners in the hardwoods were much lower than carbon steel fasteners. These data can be used to design for corrosion when building with thermally modified wood, and highlight differences between corrosion of metals embedded in wood products.

Publisher

MDPI AG

Subject

Forestry

Reference61 articles.

1. New AMS dating of bone and antler weapons from the shigir collections housed in the sverdlovsk regional museum, Urals, Russia;Savchenko,2015

2. Investigation and analysis of three gilded wood samples from the tomb of Tutankhamun;Rifai,2010

3. Weathering of wood;Williams;Handb. Wood Chem. Wood Compos.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3