Triphenylphosphine Derivatives of Allylbenzenes Express Antitumor and Adjuvant Activity When Solubilized with Cyclodextrin-Based Formulations

Author:

Zlotnikov Igor D.1,Krylov Sergey S.2,Semenova Marina N.3ORCID,Semenov Victor V.2,Kudryashova Elena V.1

Affiliation:

1. Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia

2. N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russia

3. N. K. Koltzov Institute of Developmental Biology RAS, 26 Vavilov Street, 119334 Moscow, Russia

Abstract

Allylbenzenes (apiol, dillapiol, myristicin and allyltetramethoxybenzene) are individual components of plant essential oils that demonstrate antitumor activity and can enhance the antitumor activity of cytotoxic drugs, such as paclitaxel, doxorubicin, cisplatin, etc. Triphenylphosphine (PPh3) derivatives of allylbenzenes are two to three orders of magnitude more potent than original allylbenzenes in terms of IC50. The inhibition of efflux pumps has been reported for allylbenzenes, and the PPh3 moiety is deemed to be responsible for preferential mitochondrial accumulation and the depolarization of mitochondrial membranes. However, due to poor solubility, the practical use of these substances has never been an option. Here, we show that this problem can be solved by using a complex formation with cyclodextrin (CD-based molecular containers) and polyanionic heparin, stabilizing the positive charge of the PPh3 cation. Such containers can solubilize both allylbenzenes and their PPh3 derivatives up to 0.4 mM concentration. Furthermore, we have observed that solubilized PPh3 derivatives indeed work as adjuvants, increasing the antitumor activity of paclitaxel against adenocarcinomic human alveolar basal epithelial cells (A549) by an order of magnitude (in terms of IC50) in addition to being quite powerful cytostatics themselves (IC50 in the range 1–10 µM). Even more importantly, CD-solubilized PPh3 derivatives show pronounced selectivity, being highly toxic for the A549 tumor cell line and minimally toxic for HEK293T non-tumor cells, red blood cells and sea urchin embryos. Indeed, in many cancers, the mitochondrial membrane is more prone to depolarization compared to normal cells, which probably explains the observed selectivity of our compounds, since PPh3 derivatives are known to act as mitochondria-targeting agents. According to the MTT test, 100 µM solution of PPh3 derivatives of allylbenzenes causes the death of up to 85% of A549 cancer cells, while for HEK293T non-cancer cells, only 15–20% of the cells died. The hemolytic index of the studied substances did not exceed 1%, and the thrombogenicity index was < 1.5%. Thus, this study outlines the experimental foundation for developing combined cytostatic medications, where effectiveness and selectivity are achieved through decreased concentration of the primary ingredient and the inclusion of adjuvants, which are safe or practically harmless substances.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3