Unveiling the Role of Nonionic Surfactants in Enhancing Cefotaxime Drug Solubility: A UV-Visible Spectroscopic Investigation in Single and Mixed Micellar Formulations

Author:

Rana Aysha Arshad1,Yusaf Amnah1ORCID,Shahid Salma2,Usman Muhammad3,Ahmad Matloob3ORCID,Aslam Sana1,Al-Hussain Sami A.4,Zaki Magdi E. A.4ORCID

Affiliation:

1. Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan

2. Department of Biochemistry, Government College Women University, Faisalabad 38000, Pakistan

3. Department of Chemistry, Government College University, Faisalabad 38000, Pakistan

4. Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia

Abstract

This study reports the interfacial phenomenon of cefotaxime in combination with nonionic surfactants, Triton X-100 (TX-100) and Tween-80 (TW-80), and their mixed micellar formulations. Cefotaxime was enclosed in a micellar system to improve its solubility and effectiveness. TX-100 and TW-80 were used in an amphiphilic self-assembly process to create the micellar formulation. The effect of the addition of TX-100, a nonionic surfactant, on the ability of TW-80 to solubilize the drug was examined. The values of the critical micelle concentration (CMC) were determined via UV-Visible spectroscopy. Gibbs free energies (ΔGp and ΔGb), the partition coefficient (Kx), and the binding constant (Kb) were also computed. In a single micellar system, the partition coefficient (Kx) was found to be 33.78 × 106 and 2.78 × 106 in the presence of TX-100 and TW-80, respectively. In a mixed micellar system, the value of the partition coefficient for the CEF/TW-80 system is maximum (5.48 × 106) in the presence of 0.0019 mM of TX-100, which shows that TX-100 significantly enhances the solubilizing power of micelles. It has been demonstrated that these surfactants are effective in enhancing the solubility and bioavailability of therapeutic compounds. This study elaborates on the physicochemical characteristics and solubilization of reactive drugs in single and mixed micellar media. This investigation, conducted in the presence of surfactants, shows a large contribution to the binding process via both hydrogen bonding and hydrophobic interactions.

Funder

Higher Education Commission

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3