A Meta-Analysis of the Effects of Dietary Yeast Mannan-Rich Fraction on Broiler Performance and the Implication for Greenhouse Gas Emissions from Chicken Production

Author:

Salami Saheed A.1,Taylor-Pickard Jules2,Ross Stephen A.3,Moran Colm A.4ORCID

Affiliation:

1. Alltech Biotechnology Centre, Summerhill Road, A86 X006 Dunboyne, Ireland

2. Solutions Deployment Team, Alltech (UK) Ltd., Ryhall Road, Stamford PE9 1TZ, UK

3. Alltech E-CO2, Ryhall Road, Stamford PE9 1TZ, UK

4. Regulatory Affairs Department, Alltech SARL, Rue Charles Amand, 14500 Vire, France

Abstract

Dietary supplementation of yeast-derived mannan-rich fraction (MRF) could improve the gastrointestinal health and production efficiency of broilers, and, consequently, lower the environmental impacts of chicken production. The objective of this meta-analysis was to quantify the retrospective effects of feeding MRF (Actigen®, Alltech Inc., Nicholasville, KY) on the production performance of broilers. The meta-analysis database included 27 studies and consisted of 66 comparisons of MRF-supplemented diets vs. basal (i.e., negative control) and antibiotic-supplemented (i.e., positive control) diets. A total of 34,596 broilers were involved in the comparisons and the average final age of the birds was 35 days. Additionally, the impact of feeding MRF on the carbon footprint (feed and total emission intensities) of chicken production was evaluated using the meta-analysis results of broiler performance (MRF vs. basal diets) to develop a scenario simulation that was analyzed by a life cycle assessment (LCA) model. A database of all trials (MRF vs. basal and antibiotic diets) indicated that feeding MRF increased (p < 0.01) average daily feed intake (ADFI; +3.7%), final body weight (FBW; +3.5%), and average daily gain (ADG; 4.1%) and improved (p < 0.01) feed conversion ratio (FCR; −1.7%) without affecting (p > 0.05) mortality. A subdatabase of MRF vs. basal diets indicated that dietary MRF increased ADFI (+4.5%), FBW (+4.7%), and ADG (+6.3%) and improved FCR (−2.2%) and mortality (−21.1%). For the subdatabase of MRF vs. antibiotic diets, both treatments exhibited equivalent effects (p > 0.05) on broiler performance parameters, suggesting that MRF could be an effective alternative to in-feed antibiotics. Subgroup analysis revealed that different study factors (year of study, breed/strain, production challenges, and MRF feeding duration) influenced the effect of dietary MRF on broiler performance. Simulated life cycle analysis (LCA) indicated that feeding MRF decreased feed and total emission intensities, on average, by −2.4% and −2.1%, respectively. In conclusion, these results demonstrate that dietary MRF is an effective nutritional solution for improving broiler performance, an effective alternative to in-feed antibiotic growth promoters, and reduces the environmental impact of poultry meat production.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3