Genome-Wide Gene–Environment Interaction Analysis Identifies Novel Candidate Variants for Growth Traits in Beef Cattle

Author:

Deng Tianyu12,Li Keanning1,Du Lili1,Liang Mang1,Qian Li1,Xue Qingqing1,Qiu Shiyuan1,Xu Lingyang1,Zhang Lupei1ORCID,Gao Xue1,Lan Xianyong2,Li Junya1,Gao Huijiang1

Affiliation:

1. Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China

2. Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China

Abstract

Complex traits are widely considered to be the result of a compound regulation of genes, environmental factors, and genotype-by-environment interaction (G × E). The inclusion of G × E in genome-wide association analyses is essential to understand animal environmental adaptations and improve the efficiency of breeding decisions. Here, we systematically investigated the G × E of growth traits (including weaning weight, yearling weight, 18-month body weight, and 24-month body weight) with environmental factors (farm and temperature) using genome-wide genotype-by-environment interaction association studies (GWEIS) with a dataset of 1350 cattle. We validated the robust estimator’s effectiveness in GWEIS and detected 29 independent interacting SNPs with a significance threshold of 1.67 × 10−6, indicating that these SNPs, which do not show main effects in traditional genome-wide association studies (GWAS), may have non-additive effects across genotypes but are obliterated by environmental means. The gene-based analysis using MAGMA identified three genes that overlapped with the GEWIS results exhibiting G × E, namely SMAD2, PALMD, and MECOM. Further, the results of functional exploration in gene-set analysis revealed the bio-mechanisms of how cattle growth responds to environmental changes, such as mitotic or cytokinesis, fatty acid β-oxidation, neurotransmitter activity, gap junction, and keratan sulfate degradation. This study not only reveals novel genetic loci and underlying mechanisms influencing growth traits but also transforms our understanding of environmental adaptation in beef cattle, thereby paving the way for more targeted and efficient breeding strategies.

Funder

National Natural Science Foundations of China

Science and Technology Project of Inner Mongolia Autonomous Region

Program of National Beef Cattle and Yak Industrial Technology System

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3