Effects of Phytochemicals on Blood Pressure and Neuroprotection Mediated Via Brain Renin-Angiotensin System

Author:

Kim Hae Rin,Kim Woo Kyoung,Ha Ae Wha

Abstract

Background: The renin-angiotensin system (RAS) in the brain plays a crucial role in maintaining blood pressure as well as neuroprotection. This study compared the effects of curcumin, quercetin, and saponin on blood pressure, the brain RAS, and cholinergic system using perindopril, an angiotensin converting enzyme inhibitor (ACEI), as a positive control. Methods: Five-week-old male mice were stabilized and randomly assigned into a control group (n = 8), three phytochemical-treated groups (curcumin (n = 8), quercetin (n = 8), and saponin (n = 8)), and a positive control group (n = 8). The groups treated with the phytochemical were orally administered daily at a dose of 50 mg/kg body weight of phytochemicals. During the experiments, the weight and dietary intakes were measured regularly. After experiments, the brain tissue was homogenized and centrifuged for an additional assay. The concentrations of ACE, angiotensin II (AngII), and aldosterone levels were measured, and the mRNA expressions of renin and ACE were measured. As biomarkers of neuroprotection, the concentrations of acetylcholine(Ach) as well as the concentration and activity of acetylcholine esterase (AChE) were measured. Results: After 4 weeks of treatment, the perindopril group showed the lowest blood pressure. Among the groups treated with the phytochemicals, treatment with curcumin and saponin significantly reduced blood pressure, although such effect was not as high as that of perindopril. Among phytochemicals, curcumin treatment significantly inhibited the concentration and activity of ACE, concentration of AngII, and mRNA expression of ACE. All phytochemical treatments significantly increased the concentration of ACh. The levels of AChE activity in groups exposed to curcumin or saponin (not quercetin) were significantly inhibited, Conclusion: Curcumin administration in rats reduced blood pressure by blocking the brain RAS components and protected the cholinergic system in brain by inhibiting the activity of AChE.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3