Author:
Mahmoudjanlou Yasaman,Hoff Birgit,Kück Ulrich
Abstract
Penicillium brevicompactum is a filamentous ascomycete used in the pharmaceutical industry to produce mycophenolic acid, an immunosuppressant agent. To extend options for genetic engineering of this fungus, we have tested two resistance markers that have not previously been applied to P. brevicompactum. Although a generally available phleomycin resistance marker (ble) was successfully used in DNA-mediated transformation experiments, we were not able to use a commonly applicable nourseothricin resistance cassette (nat1). To circumvent this failure, we constructed a new nat gene, considering the codon bias for P. brevicompactum. We then used this modified nat gene in subsequent transformation experiments for the targeted disruption of two nuclear genes, MAT1-2-1 and flbA. For MAT1-2-1, we obtained deletion strains with a frequency of about 10%. In the case of flbA, the frequency was about 4%, and this disruption strain also showed reduced conidiospore formation. To confirm the deletion, we used ble to reintroduce the wild-type genes. This step restored the wild-type phenotype in the flbA deletion strain, which had a sporulation defect. The successful transformation system described here substantially extends options for genetically manipulating the biotechnologically relevant fungus P. brevicompactum.
Funder
Deutsche Forschungsgemeinschaft
Subject
Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献