Gradient Printing Alginate Herero Gel Microspheres for Three-Dimensional Cell Culture

Author:

Gong YoupingORCID,Chen Honghao,Li Wenxin,Zhou Chuanping,Zhou Rougang,Zhao Haiming,Shao HuifengORCID

Abstract

Hydrogel microspheres are widely used in tissue engineering, such as 3D cell culture and injection therapy, and among which, heterogeneous microspheres are drawing much attention as a promising tool to carry multiple cell types in separated phases. However, it is still a big challenge to fabricate heterogeneous gel microspheres with excellent resolution and different material components in limited sizes. Here, we developed a multi-channel dynamic micromixer, which can use active mechanical mixing to achieve rapid mixing with multi-component materials and extrude the homogenized material. By changing the flow rate ratio of the solutions of the two components and by rapidly mixing in the micromixer, real-time concentration change of the mixed material at the outlet could be monitored in a process so-called “gradient printing”. By studying the mixing efficiency of the micromixer, its size and process parameters were optimized. Using the novel dynamic gradient printing method, the composition of the hydrogel microspheres can be distributed in any proportion and alginate heterogeneous gel microspheres with adjustable cell concentration were fabricated. The effects of cell concentration on cell viability and proliferation ability under three-dimensional culture conditions were also studied. The results showed that cells have very low death rate and can exchange substances within the microspheres. Due to the micromixing ability of the micromixers, the demand for biological reagents and materials such as cells, proteins, cytokines and other materials could be greatly reduced, which helps reduce the experimental cost and improve the feasibility of the method in practical use. The heterogeneous gel microsphere can be greatly valuable for research in various fields such as analytical chemistry, microarray, drug screening, and tissue culture.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3