Abstract
Stress corrosion cracking is a well-known phenomenon in oxide glasses. However, how amorphous phase separation (APS) alters stress corrosion cracking, and the overall mechanical response of an oxide glass is less known in literature. APS is a dominant feature concerning many multicomponent systems, particularly the ternary sodium borosilicate (SBN) glass systems. Its three constituent oxides have significant industrial relevance, as they are the principal components of many industrial oxide glasses. Simulations and experimental studies demonstrate the existence of a two-phase metastable miscibility gap. Furthermore, theory suggests the possibility of three-phase APS in these oxide glasses. Literature already details the mechanisms of phase separation and characterizes SBN microstructures. Realizing that glasses are structurally sensitive materials opens a number of other questions concerning how the mesoscopic APS affects the continuum behavior of glasses, including dynamic fracture and stress corrosion cracking. This paper reviews current literature and provides a synthetic viewpoint on how APS structures of oxide glasses alter physical, mechanical, dynamic fracture, and stress corrosion cracking properties.
Funder
Agence Nationale de la Recherche
Ile-de-France
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献