Robust Liu Estimator Used to Combat Some Challenges in Partially Linear Regression Model by Improving LTS Algorithm Using Semidefinite Programming

Author:

Altukhaes Waleed B.12,Roozbeh Mahdi3ORCID,Mohamed Nur A.1ORCID

Affiliation:

1. Institute of Mathematical Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia

2. Department of Mathematics, College of Science and Humanities, Shaqra University, Sahqra 11961, Saudi Arabia

3. Department of Statistics, Faculty of Mathematics, Statistics and Computer Sciences, Semnan University, Semnan 3513119111, Iran

Abstract

Outliers are a common problem in applied statistics, together with multicollinearity. In this paper, robust Liu estimators are introduced into a partially linear model to combat the presence of multicollinearity and outlier challenges when the error terms are not independent and some linear constraints are assumed to hold in the parameter space. The Liu estimator is used to address the multicollinearity, while robust methods are used to handle the outlier problem. In the literature on the Liu methodology, obtaining the best value for the biased parameter plays an important role in model prediction and is still an unsolved problem. In this regard, some robust estimators of the biased parameter are proposed based on the least trimmed squares (LTS) technique and its extensions using a semidefinite programming approach. Based on a set of observations with a sample size of n, and the integer trimming parameter h ≤ n, the LTS estimator computes the hyperplane that minimizes the sum of the lowest h squared residuals. Even though the LTS estimator is statistically more effective than the widely used least median squares (LMS) estimate, it is less complicated computationally than LMS. It is shown that the proposed robust extended Liu estimators perform better than classical estimators. As part of our proposal, using Monte Carlo simulation schemes and a real data example, the performance of robust Liu estimators is compared with that of classical ones in restricted partially linear models.

Funder

Ministry of Higher Education Malaysia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3