Dynamic Niches-Based Hybrid Breeding Optimization Algorithm for Solving Multi-Modal Optimization Problem

Author:

Cai Ting1ORCID,Qiao Ziteng1,Ye Zhiwei1,Pan Hu1,Wang Mingwei1,Zhou Wen1,He Qiyi1,Zhang Peng2,Bai Wanfang3

Affiliation:

1. School of Computer Science, Hubei University of Technology, Wuhan 430068, China

2. Wuhan Fiberhome Technical Services Co., Ltd., Wuhan 430205, China

3. Xining Big Data Service Administration, Xining 810000, China

Abstract

Some problems exist in classical optimization algorithms to solve multi-modal optimization problems and other complex systems. A Dynamic Niches-based Improved Hybrid Breeding Optimization (DNIHBO) algorithm is proposed to address the multi-modal optimization problem in the paper. By dynamically adjusting the niche scale, it effectively addresses the issue of niche parameter sensitivity. The structure of the algorithm includes three distinct groups: maintainer, restorer, and sterile lines for updating operations. However, the maintainer individuals often stagnate, leading to the risk of the local optima. To overcome this, neighborhood search and elite mutation strategies are incorporated, enhancing the balance between exploration and exploitation. To further improve individual utilization within niches, a niche restart strategy is introduced, ensuring sustained population diversity. The efficacy of DNIHBO is validated through simulations on 16 multi-modal test functions, followed by comparative analyses with various multi-modal optimization algorithms. The results convincingly demonstrate that DNIHBO not only effectively locates multiple global optima but also consistently outperforms other algorithms on test functions. These findings underscore the superiority of DNIHBO as a high-performing solution for multi-modal optimization.

Funder

National Natural Science Foundation of China

the Natural Science Foundation of Hubei Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3